

Robert O'Callahan
Mozilla Corporation

Trying To Not Use All Your
Memory

Please be interactive.

Credit to Nick Nethercote and
many others.

● Our problem space
● A glimpse into Firefox memory

management
● What we haven't figured out yet

Once upon a time, Web
browsers were simple.

Things have changed.

One Point Of View

Javascript

Networking APIResource loading HTML/CSS rendering

Canvas drawing API DOM API Storage API

Host Objects
● DOM API objects implemented by browser

in C++
● FFI/“DOM bindings” very important
● Memory management across language

boundary very important
● Especially cycles

Additional Constraints
● 100s of tabs
● KB to GB per tab
● Page load/unload churn
● 60FPS
● “The Web” is difficult to characterize and

evolves rapidly

Commodity Software
● Users compare browser memory usage,

share impressions, and switch browsers
● Reducing memory usage matters even if it

has no impact on performance
● Must release memory ASAP when closing

tabs while user is watching Task Manager
● Must be competitive even on extremely

poorly designed Web sites
● Worst-case performance matters

Memory Management In Firefox
● JS heap: incremental mark and sweep

collector
● WIP: Moving generational

● C++ objects: reference counting with
smart pointers

● Everything: cycle collector
[Bacon+Rajan, ECOOP01]

"It [reference counting] ... is unused
by mature high performance
systems."
 ― An ISMM 2012 paper

Cycle Collection

2

1

3

1

Cycle Collection

1

1

Node marked
purple/”suspect”
when refcount
decremented

Live purple nodes
are “roots” of
potential cycles. CC
does not require
explicit knowledge
of root set (win!)

2

1

Cycle Collection

1

1

Mark purple nodes and those reachable from
purple as “gray”. Count number of incoming
edges found for each node.

2

1

1

1

1

1

Cycle Collection

1

1

Traverse gray nodes breadth-first, starting with the former
purple nodes:

If all references found, then it's garbage; release it later.
Otherwise it's live: preserve it and all gray nodes

reachable from it.

2

1

1

1

1

1

Cycle Collector
✔Works with C++ (albeit manual tracing)
✔Edges and objects that can't be involved in

cycles don't need tracing
✔Only looks at potential garbage not already

released by reference counting
● “Everything live” is a common steady state
● Can delay CC until a certain amount of

potential garbage exists
XNot fully generational/incremental (yet)

Optimizing Cycle Collection

HTML Element

HTML Document Browser
Window

Skip purple node if
we can quickly
determine it is live

Optimizing Cycle Collection

HTML Element

HTML Document Browser
Window Root!

Application-specific
fast liveness test for
big wins.
Generalize this!

Javascript Compartments
http://example.com http://example.com/subframe

windowwrapper

Wrapper list

Security, accounting, GC, CPG

Firefox had a reputation for
memory usage.

MemShrink

Nick Nethercote

Built better measurement
tools.

Found and fixed many bugs.

Bugs Found
● Actual leaks
● Bloated data structures
● Space allocated but never used
● Non-Firefox issues: leaky addons and sites

sqlite3_int64 *p;
nByte = ROUND8(nByte);
p = malloc(nByte+8);
if(p){
 p[0] = nByte;
 p++;
}

nByte is normally an SQLite page size,
a power of 2...

● Nick used instrumentation to find and fix
many such issues

Unscientific Benchmark

Lifehacker, Feb 2012

Blocking Addon-related Leaks

Browser UI
Addon

twitter.com facebook.comtwitter.com

google.com

Blocking Addon-related Leaks

Browser UI
Addon

twitter.com facebook.comtwitter.com

google.com

Blocking Addon-related Leaks

Browser UI
Addon

twitter.com facebook.comtwitter.com

google.com

X

Lessons Learned
● Need measurement tools users can run
● Need good tools for Web developers and

Firefox addon developers
● Still difficult to debug some bugs:

“I ran Firefox for a week and leaked some
memory”

Thoughts for the future:

How far can you push
refcounting + cycle collection?

Interactive applications
demand 60fps.
Not much time for GC pauses
or VM page-in.
End of virtual memory?

Divergence between client and
server workloads.

Without virtual memory, how
should apps cooperate to
optimize memory usage?
“OOM killing” is popular, but
suboptimal. “ashmem”
difficult to use.

Applications make isolated
caching decisions based on
little data and less principle.

Foolproof abstractions that
Web developers can use to
optimize memory usage
across a pool of apps?

Valuable negative results:
Solutions that should work
but don't.

Questions?

Clownshoes: http://www.flickr.com/photos/29233640@N07/5131195458/
Pig: http://www.flickr.com/photos/22864665@N06/5082987037/

http://www.flickr.com/photos/29233640@N07/5131195458/
http://www.flickr.com/photos/29233640@N07/5131195458/
http://www.flickr.com/photos/29233640@N07/5131195458/
http://www.flickr.com/photos/29233640@N07/5131195458/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

