
Rust And Research

Robert O'Callahan

A programming language had

Memory safety

A programming language had

Memory safety
No GC

A programming language had

Memory safety
No GC
Stateful updates

A programming language had

Memory safety
No GC
Stateful updates
As fast as C/C++

A programming language had

Memory safety
No GC
Stateful updates
As fast as C/C++
Integer overflow is an error

A programming language had

Memory safety
No GC
Stateful updates
As fast as C/C++
Integer overflow is an error
Data race free

A programming language had

Memory safety
No GC
Stateful updates
As fast as C/C++
Integer overflow is an error
Data race free
Tight restrictions on aliasing

A programming language had

Memory safety
No GC
Stateful updates
As fast as C/C++
Integer overflow is an error
Data race free
Tight restrictions on aliasing
Affine types (e.g. supports “session types”)

Sounds like a crazy research
project!

Would normal developers be
interested in using such a
language?

Could it possibly scale to large
systems in practice?

Top 15 languages by Github PRs

JavaScript: 1736476
Python: 804790
Java: 703649
Ruby: 560430
PHP: 359040
C++: 319324
TypeScript: 311229
Go: 258131

C#: 246513
CSS: 236795
Shell: 168301
C: 160889
Swift: 67664
Scala: 67188
Rust: 52936

Some Rust core principles

Ownership and move semantics
let x: T = T::new();
let y = x;

Borrowed references with lifetimes
fn f<’a>(x: &’a T) → &’a U { &x.field }

Read-only references can be shared and the data
is immutable
Mutable references are exclusive

No other reference to that data is in scope

Research problems solved

Memory safety without GC ✔

Data race freedom ✔

Practical affine types ✔

Working in practice at scale!!! ✔✔✔

New research problems

What sort of static analyses benefit Rust?

Null pointer deref → Option::unwrap()

New research problems

Can static analyses leverage Rust invariants?

E.g. mutable references can’t alias other references

New research problems

Formal semantics and verification of unsafe Rust
Rustbelt project (Derek Dreyer et al., MPI-SWS)

Safe Rust code

Unsafe Rust code
Safe abstraction

Unsafe Rust code
Safe abstraction

Conclusions

Rust has raised the bar for systems programming
languages

Expect Rust and Rust-like languages to be
increasingly used for systems/embedded/safety
critical systems

Consider targeting problems relevant to these
languages and taking advantage of their features/
restrictions

